FSHD: A Repeat Contraction Disease Finally Ready to Expand (Our Understanding of Its Pathogenesis)

نویسنده

  • Christopher E. Pearson
چکیده

Facioscapulohumeral muscular dystrophy (FSHD), was one of the first diseases shown to be caused by an unstable repeat in the early 1990s along with spinal and bulbar muscular atrophy (SBMA), myotonic dystrophy (DM1), and fragile X mental retardation (FRAXA), where the latter three are caused by genetically expanding trinucleotide repeats [1]. However, FSHD differs considerably from the trinuclotide repeat diseases, as it is caused by a contraction of a macrosatellite (D4Z4 repeat, 3.3 kb/unit). Moreover, far less is understood about the pathogenic mechanism for FSHD, relative to SBMA, DM1, and FRAXA. This is not due to a shortage of experimental efforts, plausible hypotheses, or collaborative efforts towards understanding FSHD [2,3]. The elucidation of FSHD is hampered by the size of the unstable repeat, its sequence complexity, the number of repeat units, and the presence of the repeat on Chromosomes 4 and 10, making analysis technically difficult. The difficulty is compounded further by the absence of an obvious gene, transcript, or protein in the unstable or proximal region; in fact, the D4Z4 repeats have been referred to as ‘‘junk’’ DNA or are thought to be a pseudogene, at best. As a result, FSHD has proved to be one of the most complex and challenging genetic diseases to even a glimpse an underlying pathogenic cause for FSHD. Several recent papers, including one in this issue of PLoS Genetics [4], have made significant advances that now permit us to expand our understanding of FSHD pathogenesis, a repeat contraction disease. FSHD presents with weakness of facial muscles, stabilizers of the scapula, or dorsiflexors of the foot. The weakness is progressive with age. Disease severity is highly variable and shows some signs of anticipation, common to other repeatassociated diseases. FSHD is autosomal dominant, characterized by a deletion of D4Z4 repeat units, located in the subtelomere of chromosome 4q35 (Figure 1). Non-affected D4Z4 alleles are polymorphic having 11–100 repeat units; individuals affected with FSHD have 10 or fewer units, but must have at least one unit to show disease, which is now known to be the most telomeric unit. D4Z4 contractions can be inherited or occur as de novo mutations. The contracted D4Z4 repeat arrays show loss of DNA methylation and reduced histone 3 lysine 9 trimethylation, consistent with a more open chromatin structure [5]. The role of the altered chromatin in FSHD pathogenesis is controversial and has been suggested to enhance expression of adjacent genes like FRG1 or ANT1 [6]. More recently, FSHD2-affected individuals that display the altered chromatin but have noncontracted D4Z4 repeats have implicated the derepression of a DUX4 transcript encoded on the D4Z4 repeat units [7,8]. However, the mechanism through which the altered chromatin at D4Z4 repeats contributes to FSHD remains unclear.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ZNF555 protein binds to transcriptional activator site of 4qA allele and ANT1: potential implication in Facioscapulohumeral dystrophy

Facioscapulohumeral dystrophy (FSHD) is an epi/genetic satellite disease associated with at least two satellite sequences in 4q35: (i) D4Z4 macrosatellite and (ii) β-satellite repeats (BSR), a prevalent part of the 4qA allele. Most of the recent FSHD studies have been focused on a DUX4 transcript inside D4Z4 and its tandem contraction in FSHD patients. However, the D4Z4-contraction alone is not...

متن کامل

Specific Loss of Histone H3 Lysine 9 Trimethylation and HP1γ/Cohesin Binding at D4Z4 Repeats Is Associated with Facioscapulohumeral Dystrophy (FSHD)

Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant muscular dystrophy in which no mutation of pathogenic gene(s) has been identified. Instead, the disease is, in most cases, genetically linked to a contraction in the number of 3.3 kb D4Z4 repeats on chromosome 4q. How contraction of the 4qter D4Z4 repeats causes muscular dystrophy is not understood. In addition, a smaller group of FS...

متن کامل

Common epigenetic changes of D4Z4 in contraction-dependent and contraction-independent FSHD.

Facioscapulohumeral muscular dystrophy (FSHD), caused by partial deletion of the D4Z4 macrosatellite repeat on chromosome 4q, has a complex genetic and epigenetic etiology. To develop FSHD, D4Z4 contraction needs to occur on a specific genetic background. Only contractions associated with the 4qA161 haplotype cause FSHD. In addition, contraction of the D4Z4 repeat in FSHD patients is associated...

متن کامل

Rbfox1 Downregulation and Altered Calpain 3 Splicing by FRG1 in a Mouse Model of Facioscapulohumeral Muscular Dystrophy (FSHD)

Facioscapulohumeral muscular dystrophy (FSHD) is a common muscle disease whose molecular pathogenesis remains largely unknown. Over-expression of FSHD region gene 1 (FRG1) in mice, frogs, and worms perturbs muscle development and causes FSHD-like phenotypes. FRG1 has been implicated in splicing, and we asked how splicing might be involved in FSHD by conducting a genome-wide analysis in FRG1 mic...

متن کامل

β-Catenin is central to DUX4-driven network rewiring in facioscapulohumeral muscular dystrophy.

Facioscapulohumeral muscular dystrophy (FSHD) is an incurable disease, characterized by skeletal muscle weakness and wasting. Genetically, FSHD is characterized by contraction or hypomethylation of repeat D4Z4 units on chromosome 4, which causes aberrant expression of the transcription factor DUX4 from the last repeat. Many genes have been implicated in FSHD pathophysiology, but an integrated m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2010